
Available online at www.sciencedirect.com
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 51 (2008) 1658–1664
Natural convection about a vertical plate embedded in a
bidisperse porous medium

D.A. Nield a, A.V. Kuznetsov b,*

a Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
b Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA

Received 21 May 2007; received in revised form 12 July 2007
Available online 11 September 2007
Abstract

The classical Cheng–Minkowycz study of convection past a vertical plate embedded in a porous medium has been extended to the case
of a bidisperse porous medium (BDPM). The boundary layer analysis leads to expressions for the velocity and temperature fields in terms
of a geometrical parameter, an inter-phase momentum transfer parameter, a thermal diffusivity ratio, a permeability ratio, a thermal
conductivity ratio, and an inter-phase heat transfer parameter. For the leading edge region, and for an inner layer, a similarity solution
is obtained numerically. This involves the first four parameters, each of which is a characteristic of the BDPM.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A bidisperse porous medium (BDPM, see Fig. 1), as
informally defined by Chen et al. [1,2], is composed of clus-
ters of large particles that are agglomerations of small par-
ticles. Thus there are macro-pores between the clusters and
micro-pores within them. Applications are found in bidis-
perse adsorbent or bidisperse capillary wicks in a heat pipe.
Since the bidisperse wick structure significantly increases
the area available for liquid film evaporation, it has been
proposed for use in the evaporator of heat pipes.

A BDPM may thus be looked at as a standard porous
medium in which the solid phase is replaced by another
porous medium, whose temperature may be denoted by
Tp if local thermal equilibrium is assumed within each clus-
ter. We can then talk about the f-phase (the macro-pores)
and the p-phase (the remainder of the structure). An alter-
native way of looking at the structure is to regard it as a
porous medium in which fractures or tunnels have been
introduced. One can then think of the f-phase as being a
‘fracture phase’ and the p-phase as being a ‘porous phase’.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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The Darcy model for the steady-state momentum trans-
fer in a BDPM is represented by the following pair of cou-
pled equations for the Darcy velocities v�f and v�p, where the
asterisks denote dimensional variables

G ¼ l
K f

� �
v�f þ fðv�f � v�pÞ; ð1aÞ

G ¼ l
Kp

� �
v�p þ fðv�p � v�f Þ: ð1bÞ

Here G is the negative of the applied pressure gradient, l is
the fluid viscosity, Kf and Kp are the permeabilities of the
two phases, and f is the coefficient for momentum transfer
between the two phases.

These equations were applied by Nield and Kuznetsov
[3,4] to forced convection in a channel and by Nield and
Kuznetsov [5] to the Horton–Rogers–Lapwood problem
(the paradigmatic problem for natural convection in an
enclosed region). These studies were reviewed by Nield
and Kuznetsov [6].

In this paper we apply the two-velocity two-temperature
formulation to a problem that is paradigmatic for external
natural convection in a porous medium, namely the prob-
lem of convection past a vertical plate, a problem first con-
sidered by Cheng and Minkowycz [7]. The problem leads
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Nomenclature

c specific heat at constant pressure
d characteristic length scale
G negative of the applied pressure gradient
g gravitational acceleration
h inter-phase heat transfer coefficient (incorporat-

ing the specific area)
ĥ dimensionless inter-phase heat transfer parame-

ter, hd2//kf

H ĥ=R
k thermal conductivity
K permeability
Kr permeability ratio, Kp/Kf

R Rayleigh number, qFgb̂ðT w�T1ÞK f d
l/kf=ðqcÞf

T1 ambient temperature
Tw wall temperature
v* filtration velocity

Greek symbols
a thermal diffusivity ratio, kf

kp

ðqcÞp
ðqcÞf

b modified thermal capacity ratio,
ð1�/ÞkpðqcÞf

/kf ðqcÞp

b̂ volumetric thermal expansion coefficient of the
fluid

c modified thermal conductivity ratio, /kf

ð1�/Þkp

e porosity within the p-phase
f coefficient for momentum transfer between the

two phases
g boundary-layer parameter
l fluid viscosity
qF density of the fluid
rf f-phase momentum transfer parameter, fK f

l
s /

/þð1�/Þe
/ volume fraction of the f-phase

Subscripts

f fracture phase (macro-pores)
p porous phase (micro-pores)

Superscripts
* dimensional variable
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naturally to a boundary-layer formulation. We are guided
by a study using a model involving two temperatures (local
thermal non-equilibrium) but a single velocity by Rees and
Pop [8]. Related work is presented in [9–12]. For the more
general aspects of convection in a porous medium past a
vertical plate the reader is referred to the survey in Section
5.1 of Nield and Bejan [13]. It is also worth mentioning that
similar work involving local thermal non-equilibrium for
the geometry of the Horton–Rogers–Lapwood problem
has been surveyed in Section 6.5 of [13].
2. Analysis

We consider steady two-dimensional flow in a BDPM
induced by a vertical heated plate held at the constant tem-
perature Tw and embedded in the BDPM with ambient
temperature T1. In the following analysis asterisks denote
dimensional variables. The plate is taken to lie along the
positive x*-axis. The configuration is standard, and the
reader is referred to Figure 5.1 of [13] or Figure 1 of [7].
The equations of continuity (expressing conservation of
mass) for the velocity components in the two phases are

ou�f
ox�
þ ov�f

oy�
¼ 0; ð2aÞ

ou�p
ox�
þ

ov�p
oy�
¼ 0: ð2bÞ

We note that in the traditional Darcy formulation the pres-
sure is an intrinsic quantity, i.e. it is the pressure in the
fluid. We recognize that in a BDPM the fluid occupies all
of the f-phase and a fraction of the p-phase. We denote
the volume fraction of the f-phase by / (something that
in a regular porous medium would be called the porosity)
and the porosity in the p-phase by e. Thus 1 � / is the vol-
ume fraction of the p-phase, and the volume fraction of the
BDPM occupied by the fluid is / + (1 � /)e. The volume
average of the temperature over the fluid is

T �F ¼
/T �f þ ð1� /ÞeT �p

/þ ð1� /Þe : ð3Þ

The drag force (per unit volume) balances the gradient of
the excess pressure over hydrostatic. Our basic hypothesis
is that in a BDPM the drag is increased by an amount
fðv�f � v�pÞ for the f-phase and decreased by the same
amount for the p-phase. Accordingly, we write the momen-
tum equations as

op�

ox�
¼ � l

K f

u�f � fðu�f � u�pÞ þ qFgb̂ðT �F � T1Þ; ð4aÞ

op�

ox�
¼ � l

Kp

u�p � fðu�p � u�f Þ þ qFgb̂ðT �F � T1Þ; ð4bÞ

op�

oy�
¼ � l

K f

v�f � fðv�f � v�pÞ; ð4cÞ

op�

oy�
¼ � l

Kp

v�p � fðv�p � v�f Þ: ð4dÞ

Here qF is the density of the fluid and b̂ is the volumetric
thermal expansion coefficient of the fluid.

The thermal energy equations are taken as

/ðqcÞfv�f � rT �f ¼ /kfr2T �f þ hðT �p � T �f Þ; ð5aÞ
ð1� /ÞðqcÞpv�p � rT �p ¼ ð1� /Þkpr2T �p þ hðT �f � T �pÞ: ð5bÞ



Fig. 1. Sketch of a bidisperse porous medium adjacent to a vertical plate.
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Here c denotes the specific heat at constant pressure, k de-
notes the thermal conductivity, and h is an inter-phase heat
transfer coefficient (incorporating the specific area).

We introduce dimensionless variables as follows:

ðx�; y�Þ ¼ dðx̂; ŷÞ; p� ¼ kfl
ðqcÞfK f

p; ð6Þ

ðu�f ; v�f Þ ¼
/kf

ðqcÞfd
ðûf ; v̂fÞ; ðu�p; v�pÞ ¼

ð1� /Þkp

ðqcÞpd
ðûp; v̂pÞ; ð7Þ

T �f ¼ ðT w � T1Þhf þ T1; T �p ¼ ðT w � T1Þhp þ T1: ð8Þ

We introduce the stream functions ŵf and ŵp defined so
that

ûf ¼ �
oŵf

oŷ
; v̂f ¼

oŵf

ox̂
; ûp ¼ �

oŵp

oŷ
; v̂p ¼

oŵp

ox̂
: ð9Þ

(We use the sign convention in [8] rather than that in [5].)
We define a Rayleigh number R based on properties in

the f-phase by

R ¼ qFgb̂ðT w � T1ÞK fd
l/kf=ðqcÞf

: ð10Þ
Elimination of the pressure from Eqs. (4a–d) then leads
to

1þ rfð Þr2ŵf � brfr2ŵp ¼ R
ohF

oŷ
; ð11aÞ

� rfr2ŵf þ b
1

Kr

þ rf

� �
r2ŵp ¼ R

ohF

oŷ
; ð11bÞ

where

ohF

ox̂
¼

/ ohf

ox̂ þ ð1� /Þe ohp

ox̂

/þ ð1� /Þe : ð12Þ

Here we have introduced the dimensionless parameters

rf ¼
fK f

l
; b ¼ ð1� /ÞkpðqcÞf

/kfðqcÞp
: ð13Þ

Thus rf is an inter-phase momentum transfer parameter,
while b is a modified thermal diffusivity ratio.

Also, the thermal energy equations (5a,b) become

r2hf ¼ ĥðhf � hpÞ þ
oŵf

oŷ
ohf

ox̂
� oŵf

ox̂
ohf

oŷ
; ð14aÞ

r2hp ¼ cĥðhp � hfÞ þ
oŵp

oŷ
ohp

ox̂
� oŵp

ox̂
ohp

oŷ
; ð14bÞ

where

c ¼ /kf

ð1� /Þkp

; ĥ ¼ hd2

/kf

: ð15Þ

Thus c is a modified thermal conductivity ratio and ĥ is an
inter-phase heat transfer parameter.

Next we introduce the boundary-layer scaling

x̂ ¼ x; ŷ ¼ R�1=2y; ŵf ¼ R1=2wf ; ŵp ¼ R1=2wp; ð16Þ

and the shorthand

s ¼ /
/þ ð1� /Þe ; Kr ¼

Kp

K f

: ð17Þ

Then we get

1þ rfð Þ o
2ŵf

oy2
� brf

o2ŵp

oy2
¼ s

ohf

oy
þ ð1� sÞ ohp

oy
; ð18aÞ

� rf

o2ŵf

oy2
þ b

1

Kr

þ rf

� �
o2ŵp

oy2
¼ s

ohf

oy
þ ð1� sÞ ohp

oy
; ð18bÞ

o
2hf

oy2
¼ Hðhf � hpÞ þ

owf

oy
ohf

ox
� owf

ox
ohf

oy
; ð18cÞ

o2hp

oy2
¼ cHðhp � hfÞ þ

owp

oy
ohp

ox
�

owp

ox
ohp

oy
; ð18dÞ

where

H ¼ ĥ=R: ð19Þ

In moving from Eqs. (14a,b) to (18c,d) we have made the
usual boundary-layer approximation that conduction in
the x-direction is negligible in comparison to that in the
y-direction.
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The appropriate boundary conditions are

wf ¼ 0; wp ¼ 0; hf ¼ 1; hp ¼ 1 at y ¼ 0; ð20aÞ
owf

oy
;

owp

oy
; hf ; hp ! 0 as y !1: ð20bÞ
These boundary conditions allow Eqs. (18a,b) to be inte-
grated once to yield

1þ rfð Þ oŵf

oy
� brf

oŵp

oy
¼ shf þ ð1� sÞhp; ð21aÞ

� rf

oŵf

oy
þ b

1

Kr

þ rf

� �
oŵp

oy
¼ shf þ ð1� sÞhp: ð21bÞ
We now introduce the usual boundary-layer transforma-
tion appropriate to the Cheng–Minkowycz problem

wf ¼ x1=2f ðx; gÞ; wp ¼ x1=2gðx; gÞ; ð22aÞ
hf ¼ hfðx; gÞ; hp ¼ hpðx; gÞ; ð22bÞ
where

g ¼ y
x1=2

: ð23Þ
One then has the system
Table 1
Numerical results obtained from the solution of the system (31) for / = 0.4, e

Case rf b Kr f0(1) g0(

1 0.0001 0.1 0.0001 2.75136 0
2 0.0001 0.1 0.01 2.47119 0
3 0.0001 0.1 1 1.32878 13
4 0.0001 1 0.0001 2.75423 0
5 0.0001 1 0.01 2.72297 0
6 0.0001 1 1 1.61154 1
7 0.0001 10 0.0001 2.75452 0
8 0.0001 10 0.01 2.75136 0
9 0.0001 10 1 2.47142 0

10 0.01 0.1 0.0001 2.72886 0
11 0.01 0.1 0.01 2.44897 0
12 0.01 0.1 1 1.32878 13
13 0.01 1 0.0001 2.73173 0
14 0.01 1 0.01 2.70066 0
15 0.01 1 1 1.61153 1
16 0.01 10 0.0001 2.73202 0
17 0.01 10 0.01 2.72909 0
18 0.01 10 1 2.47142 0
19 1 0.1 0.0001 1.56692 0
20 1 0.1 0.01 1.37194 0
21 1 0.1 1 1.32878 13
22 1 1 0.0001 1.56927 0
23 1 1 0.01 1.56196 0
24 1 1 1 1.61154 1
25 1 10 0.0001 1.56951 0
26 1 10 0.01 1.58527 0
27 1 10 1 2.47142 0
1þ rfð Þf 0 � brf g0 ¼ shf þ ð1� sÞhp; ð24aÞ

� rff 0 þ b
1

Kr

þ rf

� �
g0 ¼ shf þ ð1� sÞhp; ð24bÞ

h00f þ
1

2
f h0f ¼ Hxðhf � hpÞ þ xðf 0hfx � hffxÞ; ð24cÞ

h00p þ
1

2
gh0p ¼ cHxðhp � hfÞ þ xðg0hpx � hpgxÞ; ð24dÞ

subject to the boundary conditions

f ¼ 0; g ¼ 0; hf ¼ 1; hp ¼ 1 at g ¼ 0; ð24eÞ
hf ; hp ! 0 as g!1: ð24fÞ

It is worth noting that the boundary conditions (24f) to-
gether with (24a) and (24b) imply that f0,g0 ? 0 as g ?1.

In these equations the primes denote derivatives with
respect to g and the x-subscripts denote derivatives with
respect to x.
3. Asymptotic analysis near the leading edge

We continue to follow Rees and Pop [8]. The small-x
analysis is facilitated by setting

wf ¼ x1=2F ðx; yÞ; wp ¼ x1=2Gðx; yÞ; ð25aÞ
hf ¼ Hfðx; yÞ; hp ¼ Hpðx; yÞ; ð25bÞ

in Eqs. (21a,b) and (18c,d), which become
= 0.4, and so for s = 0.625

1) �h0f0ð0Þ �h0p0ð0Þ �/h0f0ð0Þ � ð1� /Þh0p0ð0Þ
.00275 0.48226 0.10041 0.25315
.24717 0.47731 0.14151 0.27583
.28780 0.39041 1.58962 1.10993
.000275 0.48231 0.10004 0.25295
.027235 0.48182 0.10409 0.25518
.61154 0.44390 0.44390 0.44390
.000027 0.48231 0.10000 0.25293
.00275 0.48226 0.100408 0.25315
.24714 0.47734 0.14151 0.27584
.00278 0.47983 0.10041 0.25218
.24974 0.47484 0.14199 0.27513
.28780 0.39041 1.58961 1.10993
.00028 0.47987 0.10004 0.25197
.02754 0.47940 0.10414 0.25425
.61153 0.44390 0.44390 0.44390
.000028 0.47987 0.10000 0.25195
.00278 0.47985 0.10041 0.25219
.247142 0.47734 0.14151 0.27584
.00470 0.33740 0.10069 0.19538
.40351 0.33213 0.16982 0.23475
.28780 0.39040 1.58962 1.10993
.00047 0.33748 0.10007 0.19503
.04594 0.33925 0.10689 0.19983
.61154 0.44390 0.44390 0.44390
.00005 0.33748 0.10001 0.19500
.00466 0.33997 0.10069 0.19640
.247142 0.47734 0.14151 0.27584
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Fig. 2. Plots of temperature and streamfunction profiles for (a) a case
approximating a regular porous medium, and (b) a case typical of a
bidisperse porous medium.
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1þ rfð Þx1=2F y � brfx1=2Gy ¼ sHf þ ð1� sÞHp; ð26aÞ

� rfx1=2F y þ b
1

Kr

þ rf

� �
x1=2Gy ¼ sHf þ ð1� sÞHp; ð26bÞ

x1=2Hf ;yy þ
1

2
F Hf;y ¼ Hx1=2ðHf �HpÞ þ xðF yHf ;x �Hf ;yF xÞ;

ð26cÞ

x1=2Hp;yy þ
1

2
GHp;y ¼ cHx1=2ðHp �HfÞ þ xðGyHp;x �Hp;yGxÞ:

ð26dÞ

For a solution valid near the leading edge we will solve Eqs.
(24a–f) and (26a–d) using the method of matched asymp-
totic expansions with matching between the two regimes,
which are g = O(1) and y = O(1) as x ? 0, and subject to
the boundary conditions

f ¼ 0; g ¼ 0; hf ¼ 1; hp ¼ 1 at g ¼ 0; ð27Þ
Hf ; Hp ! 0 as y !1: ð28Þ

The following power series expansions in terms of x are
now assumed:

f ðx; gÞ ¼ f0ðgÞ þ x1=2f1ðgÞ þ xf2ðgÞ þ � � � ; ð29Þ
F ðx; yÞ ¼ F 0ðyÞ þ x1=2F 1ðyÞ þ xF 2ðyÞ þ � � � ; ð30Þ

with corresponding expressions for g, G, hf, hg, Hf, Hp.
When g = O(1) as x ? 0 we obtain the main boundary
layer, termed the inner layer. The relatively thick region
where y = O(1) is termed the outer layer.

At O(1) in the inner layer we obtain the equations

1þ rfð Þf 00 � brfg00 ¼ shf0 þ ð1� sÞhp0; ð31aÞ

� rff 00 þ b
1

Kr

þ rf

� �
g00 ¼ shf0 þ ð1� sÞhp0; ð31bÞ

h00f0 þ
1

2
f0h

0
f0 ¼ 0; ð31cÞ

h00p0 þ
1

2
g0h

0
p0 ¼ 0; ð31dÞ

f0ð0Þ ¼ 0; g0ð0Þ ¼ 0; hfð0Þ ¼ 1; hpð0Þ ¼ 1; ð31eÞ
hf0; hp0 ! 0 as g!1: ð31fÞ

The solution method used to solve Eqs. (31a–f) is a stan-
dard one, dating back to Cheng and Minkowycz [7] and
earlier work on boundary layers.

For the regular (monodisperse) porous medium (the
case rf = 0, Kr = 0, s = 1) the system of equations reduces
to

f 00 ¼ h0; h00f0 þ
1

2
f0h

0
f0 ¼ 0; hp0 ¼ 1: ð32a; b; cÞ

The solution of this system was presented by Cheng and
Minkowycz [7]. The features of interest are that

f0 ! 1:61613 as g!1; ð33aÞ
h00ð0Þ ¼ �0:44378; ð33bÞ

and h0 becomes exponentially small as g ?1. The numer-
ical values are those obtained by Rees and Pop [8].
4. Numerical results

It is noteworthy that the parameters H and c, the ones
associated with local thermal non-equilibrium, do not enter
the system of equations (31). Nevertheless there remain
four parameters. In this pioneering study we present
numerical results, obtained by numerical solution of the
system (31) with the geometrical parameters given fixed
values, chosen to be / = 0.4 and e = 0.4, so that
s = 0.625. Representative results are given in Table 1.

Some information about the magnitude of the inter-
phase heat transfer coefficient h in practical cases is avail-
able (see, for example, Section 2.2.2 in Nield and Bejan
[13]), but no similar information on the magnitude of the
inter-phase momentum coefficient f has been published.

The following features may be noted. The case
b = Kr = 1 with any value of rf gives values approximating
those for a regular porous medium. We refer to these as the
standard values. In a practical situation, Kr and rf are
expected to be small compared with unity. In this case,
g0(1)/f0(1) = Kr/b, while h0p0ð0Þ=h

0
f0ð0Þ is of order 0.2.

Compared with standard values, the values of h0f0ð0Þ are



Table 2
Numerical results obtained from the solution of the system (31) for / = 0.004, e = 0.4, and so for s = 0.00994

Case rf b Kr f0(1) g0(1) �h0f0ð0Þ �h0p0ð0Þ �/h0f0 0ð Þ � ð1� /Þh0p0ð0Þ
1 0.0001 0.1 0.0001 4.94742 0.00495 0.54005 0.10062 0.10238
2 0.0001 0.1 0.01 3.86017 0.38609 0.52585 0.15741 0.15889
3 0.0001 0.1 1 0.53389 5.33889 0.25357 1.40695 1.40234
4 0.0001 1 0.0001 4.96029 0.00046 0.54019 0.10006 0.10182
5 0.0001 1 0.01 4.82223 0.04823 0.53871 0.10617 0.10790
6 0.0001 1 1 1.61154 1.61154 0.44390 0.44390 0.44390
7 0.0001 10 0.0001 4.96158 0.00005 0.54020 0.10000 0.10177
8 0.0001 10 0.01 4.94743 0.00495 0.54005 0.10062 0.10238
9 0.0001 10 1 3.86063 0.38606 0.52588 0.15741 0.15888

10 0.01 0.1 0.0001 4.89886 0.00500 0.53728 0.10063 0.10237
11 0.01 0.1 0.01 3.81479 0.38903 0.52296 0.15792 0.15938
12 0.01 0.1 1 0.53389 5.33889 0.25357 1.40695 1.40234
13 0.01 1 0.0001 4.91172 0.00050 0.53741 0.10006 0.10181
14 0.01 1 0.01 4.77420 0.04869 0.53594 0.10623 0.10795
15 0.01 1 1 1.61154 1.61154 0.44390 0.44390 0.44390
16 0.01 10 0.0001 4.91301 0.00005 0.53743 0.10000 0.10176
17 0.01 10 0.01 4.89935 0.00500 0.53730 0.10063 0.10237
18 0.01 10 1 3.86063 0.38606 0.52588 0.15741 0.15888
19 1 0.1 0.0001 2.47349 0.00742 0.37410 0.10093 0.10202
20 1 0.1 0.01 1.77690 0.52262 0.35540 0.18220 0.18290
21 1 0.1 1 0.53389 5.33888 0.25357 1.40695 1.40234
22 1 1 0.0001 2.48313 0.00074 0.37431 0.10009 0.10119
23 1 1 0.01 2.41650 0.07107 0.37494 0.10920 0.11026
24 1 1 1 1.61154 1.61154 0.44390 0.44390 0.44390
25 1 10 0.0001 2.48410 0.00007 0.37433 0.10001 0.10111
26 1 10 0.01 2.51001 0.00738 0.37705 0.10093 0.10203
27 1 10 1 3.86063 0.38606 0.52588 0.15741 0.15888
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some 10% higher and those of f0(1) are higher by some-
thing of the order of 50%, and in each case the amount
of increase depends weakly on the values of b and Kr.
The table shows that, for practical values of Kr, a change
in rf from 0.0001 to 0.01 produces little change in the
solution.

In the last column of Table 1 we have presented the rep-
resentative-elementary-volume average of h0f0ð0Þ and
h0p0ð0Þ, namely /h0f0ð0Þ þ ð1� /Þh0p0ð0Þ. This is a measure
of the heat flux at the wall.

In Fig. 2a, we have presented the temperature and
streamfunction profiles for Case 6 (see Table 1), which
are close to the standard functions (corresponding to a reg-
ular porous medium). The profiles for the f-phase and the
p-phase are identical. In Fig. 2b, which is computed for
Case 2, are the profiles for a typical BDPM. The stream-
function profiles for the two phases are similar and are rel-
atively scaled by the ratio Kr/b, which in this case has the
value 0.1. In contrast, the temperature profiles for the
two phases are quite different. The profile for the f-phase
exhibits a fairly narrow boundary layer behavior, whereas
the profile for the p-phase the decay as g increases is much
less rapid, and in fact the profile is approximately linear out
to a value g = 10. The fact that there is any exponential
decay at all here is a consequence of the bidispersivity of
the porous medium. (As Rees and Pop [8] demonstrated,
for a regular porous medium the solid-phase temperature
decays linearly, not exponentially, at this order of
approximation.)
A reviewer commented that for double porosity/perme-
ability aquifers the fractures porosity is often several orders
of magnitude smaller than the primary porosity (/� e).
Results for an illustrative case are presented in Table 2.
A comparison with Table 1 reveals some quantitative dif-
ferences but qualitative similarity in general. One signifi-
cant trend appears. Comparison of the last three columns
of each table shows that the individual f-phase and p-phase
heat transfers differ little between the two tables, but the
REV-averaged heat transfer changes because it is necessar-
ily dominated by the p-phase value when / is small.

5. Conclusions

We have initiated a study of external natural convection
in a bidisperse porous medium, involving convection past a
semi-infinite vertical wall. For simplicity, the Darcy model
rather than the Brinkman model has been employed. The
boundary layer analysis has been presented in a general
form. A large number of parameters are involved. In this
pioneering study we have confined our attention to the
leading edge region. As Rees and Pop [10] have empha-
sized, what happens near the leading edge sets the scene
for what happens further down stream. Within the leading
edge region, we have concentrated on what Rees and Pop
[8] call the main boundary layer, the inner layer in the
asymptotic analysis. For this layer the solution is of simi-
larity type and involves four BDPM parameters, namely
the geometrical parameter s, the inter-phase momentum
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transfer parameter rf, the porosity-modified thermal diffu-
sivity ratio b, and the permeability ratio Kr. A regular por-
ous medium corresponds to the limiting case where 1 � s,
rf and Kr are all small compared with unity. The similarity
equations have been solved numerically for representative
values of the four parameters.

The stage has been set for future work following the
route blazed by Rees and Pop [8]. This would involve the
completion of a matched asymptotic analysis for the lead-
ing edge region, a numerical solution for an intermediate
region, and a further asymptotic analysis for the region
far from the leading edge.

A referee has drawn our attention to a number of
aspects that could be topics for further study. The analysis
can be extended to the case of a porous medium that is
characterized by two different permeabilities in the same
Representative Elementary Volume. One example would
be an aquifer composed of a matrix with a primary poros-
ity (our p-phase) and a dense network of fractures (our f-
phase). Another example would be a network of fractures
of large aperture (f-phase) and a second system of fractures
of smaller aperture (p-phase). Some relevant analysis has
been published in [14–17].

Another possible extension would be to transient flow in
double permeability media when there is hydraulic non-
equilibrium, so that each phase has a distinct value of the
pressure and the consequent pressure difference causes an
inter-phase mass exchange. The reader is again referred
to [14–17].

The referee also noted that we have assumed constant
values for the thermal conductivities. A further extension
could be to the case where the relevant Péclet number takes
large values and thermal dispersion results in the thermal
conductivity being velocity dependent [18,19].
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